A note on the use of approximation methods in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9239
(http://iopscience.iop.org/0305-4470/9/2/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:15

Please note that terms and conditions apply.

note on the use of approximation methods in general divity

R Beig

Institut für Theoretische Physik der Universität Wien, A-1090 Wien, Boltzmanngasse 5, Austria

Received 22 September 1975

Abstract

Using a perturbational technique, the advanced Green function of a scalar wave equation in the background of a plane gravitational wave is calculated up to first order in a parameter measuring the deviation of the metric from flat space-time. The result is shown to coincide with the corresponding expansion with respect to this parameter of the known exact Green function.

ILroduction

Troblematic character of perturbational methods in general relativity is sometimes wed out by referring to the fact that the characteristics of the exact equations are moll hypersurfaces with respect to the exact metric of space-time whereas, in an suive approach, the equations to be solved involve the zeroth order (e.g. Minkowski) sticin every order of approximation (Bird and Dixon 1975).
thispaper we consider the equation of a scalar, massless field in the background of the gravitational wave where an exact Green function G is known (Günther 1965).
He write the metric $g_{\mu \nu}=\eta_{\mu \nu}+\epsilon h_{\mu \nu}$, where $\eta_{\mu \nu}$ is the Minkowski tensor. This Wers that the geometrical quantities entering the expression for G are analytic in ϵ. Feempand the required geometrical objects and G up to first order in $\epsilon: G \sim \stackrel{0}{G}+\epsilon \stackrel{1}{G}$.
On the other hand, the field equations are expanded and solved up to order ϵ. This armex exprsion for G which coincides with $\stackrel{0}{G}+\epsilon \stackrel{1}{G}$ mentioned above.

1Th Green function in general

IEmalar wave equation in curved space-time reads

$$
\begin{equation*}
g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \Phi=0 . \tag{2.1}
\end{equation*}
$$

䥻notation $\mu, \nu=0,1,2,3$. The signature of g is (+---). ∇_{μ} means the arimat derivation with respect to x^{μ}.)
The Green function G is subject to

$$
\begin{equation*}
g^{1 / 4} g^{\prime 1 / 4} g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} G\left(x, x^{\prime}\right)=\delta^{(4)}\left(x, x^{\prime}\right) . \tag{2.2}
\end{equation*}
$$

(Here we have defined $g=\left|\operatorname{det} g_{\mu \nu}(x)\right|, g^{\prime}=\left|\operatorname{det} g_{\mu^{\prime} \nu}\left(x^{\prime}\right)\right|$ and

$$
\left.\delta^{(4)}\left(x, x^{\prime}\right)=\delta\left(x^{0}-x^{\sigma}\right) \delta\left(x^{1}-x^{1^{\prime}}\right) \delta\left(x^{2}-x^{2^{2}}\right) \delta\left(x^{3}-x^{3^{\prime}}\right) .\right)
$$

Now and henceforth we consider only a geodesically convex region of space-ime. In such a region we can define the 'word function' $\sigma\left(x, x^{\prime}\right)$ as half of the geodesic distance between the points x and x^{\prime}. Furthermore,

$$
\begin{equation*}
\Delta\left(x, x^{\prime}\right)=g^{-1 / 2} g^{\prime-1 / 2}\left|\operatorname{det} \nabla_{\mu} \nabla_{\nu^{\prime}} \sigma\right| . \tag{23}
\end{equation*}
$$

Then the symmetric Green function $\overline{\mathrm{G}}$ of equation (2.2) is given by

$$
\begin{equation*}
\bar{G}=(8 \pi)^{-1}\left(\Delta^{1 / 2}\left(x, x^{\prime}\right) \delta(\sigma)-v\left(x, x^{\prime}\right) \theta(\sigma)\right) \tag{2.4}
\end{equation*}
$$

(θ denotes the step function).
In (2.4) v is a smooth solution of (2.1) satisfying certain boundary conditions (for details see deWitt and Brehme 1960); v vanishes in flat space-time. Its non-vanishing in general curved space-times indicates the failure of Huyghens' principle in these spaces.

One can also define an advanced Green function by

$$
\begin{equation*}
G^{+}\left(x, x^{\prime}\right)=2 \theta\left[x^{\sigma^{\prime}}, x^{0}\right] \bar{G}\left(x, x^{\prime}\right) \tag{2.5}
\end{equation*}
$$

and a retarded one by

$$
\begin{equation*}
G^{-}\left(x, x^{\prime}\right)=2 \theta\left[x^{0}, x^{0^{\prime}}\right] \bar{G}\left(x, x^{\prime}\right)=G^{+}\left(x^{\prime}, x\right) \tag{2.6}
\end{equation*}
$$

where $\theta\left[x^{\alpha^{\prime}}, x^{0}\right]$ is equal to 1 when x^{\prime} lies in the future of x and vanishes otherwise.

3. The world function up to order ϵ (following Synge 1960)

We have

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+\epsilon h_{\mu \nu} \tag{3.1}
\end{equation*}
$$

The points x and x^{\prime} are joined by a unique geodesic Γ with respect to $g_{\mu \nu}$ and bya unique straight line C with respect to $\eta_{\mu \nu}$. Let w be a parameter on the latter varying from 0 to 1 . Then the equation for C reads

$$
\begin{equation*}
z^{\mu}=(1-w) x^{\mu}+w x^{\prime \mu} . \tag{3.2}
\end{equation*}
$$

From the very definition of a geodesic we have

$$
\begin{equation*}
\int_{\Gamma} g_{\mu \nu} \frac{\mathrm{d} z^{\mu}}{\mathrm{d} w} \frac{\mathrm{~d} z^{\nu}}{\mathrm{d} w} \mathrm{~d} w=\int_{C} g_{\mu \nu} \frac{\mathrm{d} z^{\mu}}{\mathrm{d} w} \frac{\mathrm{~d} z^{\nu}}{\mathrm{d} w} \mathrm{~d} w+\mathrm{O}\left(\epsilon^{2}\right)^{\omega} \tag{3.3}
\end{equation*}
$$

Hence

$$
\begin{align*}
\sigma\left(x, x^{\prime}\right) & =\frac{1}{2} \int_{\Gamma} g_{\mu \nu} \frac{\mathrm{d} z^{\mu}}{\mathrm{d} w} \frac{\mathrm{~d} z^{\nu}}{\mathrm{d} w} \mathrm{~d} w=\frac{1}{2} \int_{C} g_{\mu \nu} \frac{\mathrm{d} z^{\mu}}{\mathrm{d} w} \frac{\mathrm{~d} z^{\nu}}{\mathrm{d} w} \mathrm{~d} w+\mathrm{O}\left(\epsilon^{2}\right) \\
& =\frac{1}{2}\left(x^{\prime}-x\right)^{\mu}\left(x^{\prime}-x\right)^{\nu} \int_{C} g_{\mu \nu} \mathrm{d} w+\mathrm{O}\left(\epsilon^{2}\right) \\
& =\frac{1}{2}\left(x^{\prime}-x\right)^{2}+\frac{\epsilon}{2}\left(x^{\prime}-x\right)^{\mu}\left(x^{\prime}-x\right)^{\nu} \int_{C} h_{\mu \nu} \mathrm{d} w+\mathrm{O}\left(\epsilon^{2}\right) \tag{3.4}
\end{align*}
$$

ver $\left(x^{\prime}-x\right)^{2}=\left(x^{\prime}-x\right)^{\mu}\left(x^{\prime}-x\right)^{\nu} \eta_{\mu \nu}$. It is a straightforward matter to calculate $\Delta^{1 / 2}$ up puder \in from equation (3.4).

12 Green function in a plane wave background

mane coordinate systems the metric of a plane gravitational wave may be written as

$$
g_{\mu \nu}=\left(\begin{array}{rrll}
1 & 0 & 0 & 0 \tag{4.1}\\
0 & -1 & 0 & 0 \\
0 & 0 & & \\
0 & 0 & g_{\alpha \beta} &
\end{array}\right) \quad \alpha, \beta=2,3
$$

中ere $g_{a p}$ is a negative definite matrix with

$$
g_{\alpha \beta}=g_{\alpha \beta}(u) \quad\left(u=x^{0}-x^{1}\right) .
$$

Using Hadamard's theory of second-order hyperbolic equations it has been shown (founther 1965) that, for this space-time, Huyghens' principle applies to equation (2.1),施 $\mathrm{is} 0=0$. Thus

$$
\begin{equation*}
\bar{G}=(8 \pi)^{-1} \Delta^{1 / 2} \delta(\sigma) . \tag{4.2}
\end{equation*}
$$

Upto the solution of a certain ordinary differential equation, σ and hence Δ may be mitten down explicitly. This is not necessary for our purposes.
We prefer to write down σ and Δ directly in the desired approximation. We have

$$
\begin{equation*}
g_{\alpha \beta}=\delta_{\alpha \beta}+\epsilon h_{\alpha \beta} . \tag{4.3}
\end{equation*}
$$

From the results of $\S 3$ we deduce

$$
\begin{align*}
& \qquad \sigma\left(x, x^{\prime}\right)=\frac{\left(x^{\prime}-x\right)^{2}}{2}+\frac{\epsilon}{2} \frac{\left(x^{\prime}-x\right)_{\alpha}\left(x^{\prime}-x\right)_{\beta}}{u^{\prime}-u} \int_{u}^{u^{\prime}} h_{\alpha \beta}\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime}+\mathrm{O}\left(\epsilon^{2}\right) \tag{4.4}\\
& \qquad \Delta^{\prime / 2}=1+\epsilon\left(\frac{1}{2\left(u^{\prime}-u\right)} \int_{u}^{u^{\prime}} h\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime}-\frac{1}{4}\left(h\left(u^{\prime}\right)+h(u)\right)\right)+\mathrm{O}\left(\epsilon^{2}\right) \tag{4.5}\\
& \text { uhere } h=\eta^{\mu \nu} h_{\mu \nu}=-\delta_{\alpha \beta} h_{\alpha \beta} . \\
& \text { Taking for granted that } v\left(x, x^{\prime}\right)=0
\end{align*}
$$

$$
\begin{align*}
G^{+}=(4 \pi)^{-1} \theta\left(u^{\prime}-u\right) & {\left[\delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right)+\frac{\epsilon}{2} \delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right) \frac{1}{u^{\prime}-u} \int_{u}^{u^{\prime}} h\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime}\right.} \\
& -\frac{\epsilon}{4} \delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right)\left(h\left(u^{\prime}\right)+h(u)\right)+\frac{\epsilon}{2} \delta^{\prime}\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right) \\
& \left.\times\left(x^{\prime}-x\right)_{\alpha}\left(x^{\prime}-x\right)_{\beta} \frac{1}{u^{\prime}-u} \int_{u}^{u^{\prime}} h_{\alpha \beta}\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime}\right] . \tag{4.6}
\end{align*}
$$

$\$$ Sorring equation (2.2) up to order ε

Sicsituting (4.1) into (2.2) and developing up to order ϵ yields the equation

$$
\begin{equation*}
\left(\square-\epsilon h_{\alpha \beta} \partial_{\alpha} \partial_{\beta}+\epsilon \frac{\partial h}{\partial u} \partial_{v}\right) G=\delta^{(4)}\left(x, x^{\prime}\right) \tag{5.1}
\end{equation*}
$$

where $\square=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}$ and $v=x^{0}+x^{1}$ (not to be mixed up with the above used $v(x, x)$). We make the ansatz

$$
\begin{equation*}
G^{+}=\stackrel{0}{G}^{+}+\epsilon \stackrel{1}{G}^{+} \tag{5.2}
\end{equation*}
$$

where $\stackrel{0}{G}^{+}$is the advanced Green function of flat space-time:

$$
\begin{equation*}
\stackrel{0}{G}^{+}\left(x, x^{\prime}\right)=(4 \pi)^{-1} \theta\left(t^{\prime}-t\right) \delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right)=(4 \pi)^{-1} \theta\left(u^{\prime}-u\right) \delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right), \tag{5,3}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\square \stackrel{0}{G^{+}}=\delta^{(4)}\left(x, x^{\prime}\right) \tag{5.4}
\end{equation*}
$$

Then, again dropping terms of $\mathrm{O}\left(\epsilon^{2}\right)$, equation (5.1) gives

$$
\begin{equation*}
\square G^{+}=-\frac{h}{2} \delta^{(4)}\left(x, x^{\prime}\right)+\left(h_{\alpha \beta} \partial_{\alpha} \partial_{\beta}-\frac{\partial h}{\partial u} \partial_{v}\right) \stackrel{0}{G}^{+} \tag{5.5}
\end{equation*}
$$

Solving (5.5) by means of $\stackrel{0}{G^{+}}$, we arrive at

$$
\begin{equation*}
\stackrel{1}{G}^{+}=-\frac{1}{2} h\left(u^{\prime}\right) \stackrel{0}{G^{+}}-\partial_{\alpha^{\prime}} \partial_{\beta^{\prime}} J_{\alpha \beta}+\partial_{v^{\prime}} J \tag{5.6}
\end{equation*}
$$

where

$$
\begin{align*}
& J\left(x, x^{\prime}\right)=\int \mathrm{d}^{4} x^{\prime \prime} \stackrel{0}{G^{+}}\left(x^{\prime}, x^{\prime \prime}\right) \frac{\partial h\left(u^{\prime \prime}\right)}{\partial u^{\prime \prime}} \stackrel{0}{G}^{+}\left(x^{\prime \prime}, x\right) \tag{5.7}\\
& J_{\alpha \beta}\left(x, x^{\prime}\right)=\int \mathrm{d}^{4} x^{\prime \prime} \stackrel{0}{G^{+}}\left(x^{\prime}, x^{\prime \prime}\right) h_{\alpha \beta}\left(u^{\prime \prime}\right) \stackrel{0}{G^{+}}\left(x^{\prime \prime}, x\right) \tag{5.8}
\end{align*}
$$

The evaluation of the integrals $(5.7,8)$ is performed in the Appendix. Using (A.8) we obtain

$$
\begin{align*}
& J\left(x, x^{\prime}\right)=(8 \pi)^{-1} \frac{\theta\left(u^{\prime}-u\right)}{u^{\prime}-u} \theta\left[\left(x^{\prime}-x\right)^{2}\right]\left(h\left(u^{\prime}\right)-h(u)\right) \tag{5.9}\\
& J_{\alpha \beta}\left(x, x^{\prime}\right)=(8 \pi)^{-1} \frac{\theta\left(u^{\prime}-u\right)}{u^{\prime}-u} \theta\left[\left(x^{\prime}-x\right)^{2}\right] \int_{u}^{u^{\prime}} h_{\alpha \beta}\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime} \tag{5.10}
\end{align*}
$$

Substitution of $(5.9,10)$ in (5.6) yields

$$
\begin{align*}
&{\stackrel{1}{G^{+}}=(8 \pi)^{-1} \theta}^{\left(u^{\prime}-u\right)}\left[-\frac{1}{2} \delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right)\left(h\left(u^{\prime}\right)+h(u)\right)+\delta^{\prime}\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right)\left(x^{\prime}-x\right)_{\alpha}\right. \\
&\left.\times\left(x^{\prime}+x\right)_{\beta} \frac{1}{u^{\prime}-u} \int_{u}^{u^{\prime}} h_{\alpha \beta}\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime}+\delta\left(\frac{\left(x^{\prime}-x\right)^{2}}{2}\right) \frac{1}{u^{\prime}-u} \int_{u}^{u^{\prime}} h\left(u^{\prime \prime}\right) \mathrm{d} u^{\prime \prime}\right] . \tag{5.11}
\end{align*}
$$

Obviously, $\stackrel{1}{G}^{+}$, as given by (5.11) and (4.6), respectively, are identical.
fally we remark that the procedure of this section would have worked also for the bed Green function but not for the symmetric one. This is due to the fact that-in 4ntter case-the integrals corresponding to $J, J_{\alpha \beta}$ would contain terms which are ero for space-like separation of x and x^{\prime}. This difficulty can be circumvented by why witing

$$
\begin{equation*}
\bar{G}\left(x, x^{\prime}\right)=\frac{1}{2}\left(G^{-}\left(x, x^{\prime}\right)+G^{+}\left(x, x^{\prime}\right)\right)=\frac{1}{2}\left(G^{+}\left(x^{\prime}, x\right)+G^{+}\left(x, x^{\prime}\right)\right) \tag{5.12}
\end{equation*}
$$

Fimend to calculate the following integral:
$\left.\mathrm{H}_{4} x^{\prime}\right)=\int \mathrm{d}^{4} x^{\prime \prime} \theta\left(u^{\prime}-u^{\prime \prime}\right) \delta\left(\frac{\left(x^{\prime}-x^{\prime \prime}\right)^{2}}{2}\right) \theta\left(u^{\prime \prime}-u\right) \delta\left(\frac{\left(x^{\prime \prime}-x\right)^{2}}{2}\right) f\left(u^{\prime \prime}\right)$.
fivararbitrary integrable function of $u=x^{0}-x^{1}$. Furthermore we define $v=x^{0}+x^{1}$. moducing polar coordinates ($\rho^{\prime \prime}, \phi^{\prime \prime}$) in the $y^{\prime \prime}-z^{\prime \prime}$ plane, (A.1) may be written as

$$
\begin{gather*}
\text { 耻 } x^{\prime} \text {) }=\theta\left(u^{\prime}-u\right) \int_{u}^{u^{\prime}} \mathrm{d} u^{\prime \prime} \int_{-\infty}^{\infty} \mathrm{d} v^{\prime \prime} \int_{0}^{\infty} \mathrm{d}\left(\rho^{\prime \prime 2}\right) \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime \prime} \delta\left[\left(u^{\prime}-u^{\prime \prime}\right)\left(v^{\prime}-v^{\prime \prime}\right)-\left(x^{\prime}-x^{\prime \prime}\right)_{\alpha}\right. \\
\left.\quad \times\left(x^{\prime}-x^{\prime \prime}\right)_{\alpha}\right] \delta\left[\left(u^{\prime \prime}-u\right)\left(v^{\prime \prime}-v\right)-\left(x^{\prime \prime}-x\right)_{\alpha}\left(x^{\prime \prime}-x\right)_{\alpha}\right] f\left(k_{\mu} x^{\prime \prime \mu}\right) \tag{A.2}
\end{gather*}
$$

here k^{μ} is the null vector with components

$$
k^{\mu}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

\$frect evaluation of the integral (A.2) is practically impossible. We may, however, *the high symmetry of $H\left(x, x^{\prime}\right)$ to facilitate the task considerably. By a symmetry of H R mean an element $L \in \mathscr{L}_{+}^{\dagger}$ for which $H\left(L x, L x^{\prime}\right)=H\left(x, x^{\prime}\right)$. It is easy to see from $(A 1,2)$ that this is equivalent to $L k=k$. It is known (see, e.g., Jordan 1961) that this condition defines a three-dimensional subgroup U of $\mathscr{L}_{+}^{\uparrow}$. Within U there is the m-dimensional abelian subgroup of the so called 'null rotations'. Using an explicit repecentation of the null rotations one can show that it is possible to choose the prameters such that for the transformed vectors $L x=\bar{x}$ and $L x^{\prime}=\bar{x}^{\prime}$

$$
\begin{equation*}
\bar{x}_{\alpha}=\bar{x}_{\alpha}^{\prime} \quad(\alpha=2,3) . \tag{A.3}
\end{equation*}
$$

By the definition of the L 's we also have

$$
\begin{equation*}
\bar{u}=u \quad \bar{u}^{\prime}=u^{\prime} . \tag{A.4}
\end{equation*}
$$

Working in \bar{x} coordinates instead of x coordinates highly simplifies the integrations (A.2). In fact,

$$
\begin{align*}
\text { 偱 } x^{\prime}=H\left(\tilde{x}, \bar{x}^{\prime}\right)= & \theta\left(u^{\prime}-u\right) \int_{u}^{u^{\prime}} \mathrm{d} u^{\prime \prime} \int_{-\infty}^{\infty} \mathrm{d} \bar{v}^{\prime \prime} \int_{0}^{\infty} \mathrm{d}\left(\bar{\rho}^{\prime \prime 2}\right) \int_{0}^{2 \pi} \mathrm{~d} \bar{\phi}^{\prime \prime} \\
& \times \delta\left[\left(u^{\prime}-u^{\prime \prime}\right)\left(\bar{v}^{\prime}-\bar{v}^{\prime \prime}\right)-\bar{\rho}^{\prime \prime 2}\right] \delta\left[\left(u^{\prime \prime}-u\right)\left(\bar{v}^{\prime \prime}-\bar{v}\right)-\bar{\rho}^{\prime \prime 2}\right] f\left(u^{\prime \prime}\right) . \tag{A.5}
\end{align*}
$$

A straightforward calculation yields

$$
\begin{align*}
H\left(x, x^{\prime}\right) & =2 \pi \frac{\theta\left(u^{\prime}-u\right)}{u^{\prime}-u} \int_{u}^{u^{\prime}} \mathrm{d} u^{\prime \prime} \theta\left(\frac{\left(u^{\prime}-u^{\prime \prime}\right)\left(u^{\prime \prime}-u\right)\left(\bar{v}^{\prime}-\bar{v}\right)}{u^{\prime}-u}\right) f\left(u^{\prime \prime}\right) \\
& =2 \pi \frac{\theta\left(u^{\prime}-u\right)}{u^{\prime}-u} \theta\left(\tilde{v}^{\prime}-\bar{v}\right) \int_{u}^{u^{\prime}} \mathrm{d} u^{\prime \prime} f\left(u^{\prime \prime}\right) . \tag{A.6}
\end{align*}
$$

Using the definition of \bar{x} coordinates, we have

$$
\begin{equation*}
\left(\bar{u}^{\prime}-\tilde{u}\right)\left(\bar{v}^{\prime}-\bar{v}\right)=\left(u^{\prime}-u\right)\left(\bar{v}^{\prime}-\bar{v}\right)=\left(\bar{x}^{\prime}-\bar{x}\right)^{2}=\left(x^{\prime}-x\right)^{2} . \tag{A}
\end{equation*}
$$

Hence we may write for (A.6)

$$
\begin{equation*}
H\left(x, x^{\prime}\right)=2 \pi \frac{\theta\left(u^{\prime}-u\right)}{u^{\prime}-u} \theta\left[\left(x^{\prime}-x\right)^{2}\right] \int_{u}^{u^{\prime}} \mathrm{d} u^{\prime \prime} f\left(u^{\prime \prime}\right) . \tag{A.8}
\end{equation*}
$$

References

Bird J M and Dixon W G 1975 Cambridge Preprint Günther P 1965 Arch. Rational Mech Analysis 18103
Jordan P, Ehlers J and Sachs R K 1961 Abh. Math.-Naturw. Kl. Akad. Wiss. Mainz 157
Synge J L 1960 Relativity: The General Theory (Amsterdam: North-Holland) p 301
deWitt B S and Brehme R W 1960 Ann. Phys., NY 9220

