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Abstract. Using a perturbational technique, the advanced Green function of a scalar wave 
equation in the background of a plane gravitational wave is calculated up to first order in a 
parameter measuring the deviation of the metric from flat space-time. The result is shown 
to coincide with the corresponding expansion with respect to this parameter of the known 
exact Green function. 

kpblematic character of perturbational methods in general relativity is sometimes 
M out by referring to the fact that the characteristics of the exact equations are knull hypersurfaces with respect to the exact metric of space-time whereas, in an 
kdveapproach, the equations to be solved involve the zeroth order (e.g. Minkowski) 
&in every order of approximation (Bird and Dixon 1975). 
lnthispaper we consider the equation of a scalar, massless field inthe background of 

#%gravitational wave where an exact Green function G is known (Giinther 1965). 
We write the metric g,, = qpy + eh,,, where qrv is the Minkowski tensor. This 

that the geometrical quantities entering the expression for G are analytic in E .  

&expand the required geometrical objects and G up to first order in E : G - G+ EG. 
Oatheother hand, the field equations are expanded and solved up to order E .  This 

Faexpression for G which coincides with G+ EG mentioned above. 

0 1  

0 1  

l Green fnnction in general 

kQhvave equation in curved space-time reads 

g””V,Vv@ = 0. 

‘Oipnotation p, v = 0,1,2,3.  The signature of g J i s  (+ - - -). V, means the 
%denvation with respect to x”.) 
&Gee, function G is subject to 

g”4g’”4g’”VpV,G(x, X I ) =  c~‘~’(x, x’ ) .  (2.2) 
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(Here we have defined g = ldet gpu(x)1, g’ = Idet g,v(X’)l and 
#4’(x, x‘ )  = S ( x 0 - I Q )  6 ( x ’  - X I ’ )  S(x2-xZ’)  S(x3-x3’ ) . )  

Now and henceforth we consider only a geodesically convex region of spa- 
In such a region we can define the ‘word function’ d x ,  x ’ )  as half of the g& 
distance between the points x and x’. Furthermore, 

(23) 
-1/2 1-1/2 A(& x‘)  = g g ldet V,V,ol. 

Then the symmetric Green function G of equation (2 .2 )  is given by 

G = ( ~ T ) - ’ ( A I ’ ~ ( X ,  x ’ ) ~ ( u ) -  V ( X ,  x ’ ) ~ ( u ) )  (2.41 
(6 denotes the step function). 

In (2.4) I) is a smooth solution of (2.1) satisfying certain boundary conditions (feu 
details see dewin and Brehme 1960); I) vanishes in flat space-time. Its non-van- 
in general curved space-times indicates the failure of Huyghens’ principle in these 
spaces. 

One can also define an advanced Green function by 

G’(x,  x ‘ )  = 26[xv ,  x q c ( x ,  x ’ )  ( 2 4  
and a retarded one by 

G-(x ,  x? = 28[x0,  xO’]G(x, x ’ )  = G+(x ’ ,  x )  

where @[xu, x? is equal to 1 when x‘ lies in the future of x and vanishes otherwise. 

3. l’be world function up to order E (fouowing Synge 1 W )  

We have 

g”” = ?,U + Ehpu. (3.11 

The points x and x‘ are joined by a unique geodesic r with respect to g,, and bY a 
unique straight line C with respect to q,,,. Let w be a parameter on the latter varying 
from 0 to 1. Then the equation for C reads 

2, = (1 - w)x” + wx’”. (3.2) 

From the very definition of a geodesic we have 

dz’ dz’ dz’ dz” 
dw +O(e2): 

Hence 

= ~ ( x ’ - x ) ’ ( x ’ - x ) ~  g,, dW+O(e2) I, 

(3.3) 
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a(X~-EP = (x’- x)’(x’- It is a straightforward matter to calculate up 
equation (3.4). 

km mm fnnctisn in a plane wave background 

hm.,,,,r,jinate systems the metric of a pIane gravitational wave may be written as 

0 0  0 

g p w = ( i  -: lB ‘1 a,P=2,3 (4.1) 

0 0  

g, is a negative definite matrix with 

&e = &@(U) (U =xO-xl). 

using Hadamard’s theory of second-order hyperbolic equations it has been shown 
@&&er 196.5) that, for this space-time, Huyghens’ principle applies to equation (2.1), 
#ako=O. Thus 

-1 112 (4.2)  ST) A 8(a). 

Upto the sohtion of a certain ordinary differential equation, (T and hence A may be 
&ridown explicitly. This is not necessary for our purposes. 

We prefer to write down IT and b directly in the desired approximation. We have 

(4.3) &i3 = + 4 8 .  

fiom the results of 5 3 we deduce I“ hnS(u”)’duUn+O(E2) (4.4) 
( x ’ - x ) 2  E (x ‘ -  x),(x‘- X)@ 

o(x, XI) =-+- 
2 2  U‘- U 

h(u”) du”-;(h(u’)+ h(u ) ) )  + 0 ( e 2 )  (4.5) 
A1’’=l+~(-Iu 1 

2(U’- 

h=f”h,, ,  = -aaBhQ@. 
Taking for granted that v(x, x‘ )  = 0 

’ %Watim (2.2) up to order E 

*g (4.1) into (2.2) and developing up to order E yields the equation 

(n-Eh~,gaadfi +E‘du) G = 6‘4’(X, X’) 
au 

(4.6) 

(5.1) 



0 1  
G'= G'+eG' 

0 

where G' is the advanced Green function of flat space-time: 

(54  

satisfying 
0 

oG+ = a(4)(x, x'). 

Then, again dropping terms of O(E*), equation (5.1) gives 

(5.4 

(5.51 

0 

Solving (5.5) by means of G', we arriye at 

1 0 

G+= -+h(U')G+-a,,a,.J,, +a,,J (5.61 

where 

0 ah(u") 0 
J(x, x') = I d4x"G+(x', x")- G'(X'', x )  

au 
(5.7) 

0 0 
Jap(x, x') = \ d4x"@(x', x")hap(u")G+(x", x). (5.8) 

The evaluation of the integrals (5.7,8) is performed in the Appendix. Using(A.4 
we obtain 

(5.9) 

(5.101 

e(+ U )  
J(x, x')  = ( 8 ~ ) -  -@[(X'- x ) ' ] ( ~ ( u ' )  - h(u))  

U - U  

e w -  U) e[(x'-x)'] I' h,,(u") du'! 
Jps (x, x')  = (8 T)-' - 

U' -  U 

Substitution of (5.9, 10) in (5.6) yields 

6= 1 (8n)-'B(u'- U )  [ +a($) x'-x)' (h(u')+ h ( u ) ) + a ' ( y )  ( X I -  x)' (x'-X)a 

1 x'-x)' 1 
hkp(u") duff + a(+-) - h(u? du"]. 

U - U  

(5.11) 
1 

Obviously, G', as given by (5.1 1) and (4.6), respectively, are identical. 
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w y w e  remark that the procedure of this section would have worked also for the 
&Green function but not for the symmetric one. This is due to the fact that-in 

=-the integrals corresponding to J, Jus would contain terms which are 
@for space-like separation of x and x’ .  This difficulty can be circumvented by 
@ d i n g  

(5.12) 

Approximation methods in general relatiuity 

d ( x ,  x ’ ) = $ ( G - ( x ,  x’)+ G’(x,  x‘))  = $ ( G C ( x ‘ ,  x ) +  G’(x, x’)) .  

c&nd to calculate the following integral: 

fsa&&uy integrable function of u = xo- x l .  Furthermore we define U = x ” + x l .  
‘ w g  polar coordinates ( p ” ,  @”) in the y”-z” plane, (A.l) may be written as 

@,xq=e(u’-u) du” 5 dv” 1 d(p”’) [’“d@’ S [ ( ~ ‘ - ~ ’ ’ ) ~ U ’ - U ’ ’ ) - ( X ’ - X ’ ’ ) ~  
U ‘  W m 

-m 0 

X ( X “ X ” ) , ]  S [ ( U ” -  U ) ( U ” - U ) - ( X ” - X ) ~ ( X ” - X ) ~ ] ~ ( ~ + X ” + )  (A.2) 

laere k’ is the null vector with components 

ddaeet evaluation of the integral (A.2) is practically impossible. We may, however, 
stmehighsymmetry of H ( x ,  x’)  to facilitate the task considerably. By a symmetry of H 
RiWan an element L E 2: for which H ( L x ,  Lx‘ )  = H ( x ,  x‘) .  It is easy to see from 
k14that this is equivalent to Lk = k. It is known (see, e.g., Jordan 1961) that this 
@@&ion defines a three-dimensional subgroup U of 32. Within U there is the 
wens iona l  abelian subgroup of the so called ‘null rotations’. Using an explicit 
V @ W t i O n  of the null rotations one can show that it is possible to choose the 
b t e r s  such that for the transformed vectors L x  = f and Lx’  = f‘ 

a,=?; (a = 2,3). 

hbdehition of the L’s we also have 
(A.3) 

t = u  fi’ = U’. (A.4) 
. ’@hgin P coordinates instead of x coordinates highly simplifies the integrations 
@(Q.In fact, 

X 6[ ( U’ - u”)(fi‘ - 5”) - p”’] 8[(u”- U)( 5” - 5) - P”’]f( U ” ) .  (A.5) 
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A straightforward calculation yields 

Using the definition of f coordinates, we have 

(A3 (c‘-c)(c’-c) = ( U ’ - U ) ( G ’ - - ) = ( ~ ‘ - ~ ) 2 = ( X ’ - X ) 2 .  

Hence we may write for (A.6) 
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